

Expanding the Grid: How Big and Who Pays?

Summit on Maine's Economy and Climate Change

May 19,2023

William Harwood

Maine Public Advocate

- Merchant transmission Lines who's minding the store?
- FERC vs. PUC regulation?
- Northern Maine transmission line regulated or unregulated?

PUC CPCN Cases

- Traditional standard Will rates be lower if line is built than if line is not built?
- What about environmental and aesthetic benefits?
- Conditions to PUC Approval
 - How many and how broad?
 - Is paying for these conditions simply a cost of doing business in Maine?
 - How should they be counted toward whether approval is justified?

Non-wire Alternatives (NWAs)

Should utilities be allowed to own and operate NWAs?

Expanding the Grid: What Functions, Flexibility, Costs?

Climate Work Summit on Maine's Economy & Climate Change

David Littell Chair, Climate Change Practice Group Energy & Environmental Practice Group Friday, May 19, 2023

Climate Action and Grid Needs

In Maine, we should make sure every ratepayer* dollar is spent efficiently and effectively to make the best investments for customers* to:

- · Improve reliability and service,
- · Build grid scale solar and wind,
- · Support distributed resources,
- · Improve efficiency and electrify, and
- · Support Maine's future and economic growth.

*rate payers must pay rates for service; customers receive benefits and choose how to spend their customer dollars

What Maine needs to make climate progress

- Better **planning** < scattershot
 - Long term integrated grid planning will help.
- More cooperation > contention
 - Governmental power is a huge diversion from climate progress.
- A plan is directional
 - Good plans are flexible.
 - Plans channel effort, spending, and training.

Factoids

Versant is working on 432 active projects to integrate 500+ megawatts of solar, wind.

Solar requests alone would generate more electricity than the Versant system needs.

Advanced Technology is expensive > use to pursue value

- Grid Value
- Customer Value
- Utility Value

Good policy alignsall three!

With technology and policy evolving, and processes changing – Maine will likely remain in problem -solving mode.

Advanced Energy Planning: New Approaches

- Transmission and distribution planning (traditional "supply side") is understood.
- Demand-side management "DSM" is newer.
- Four DSM capabilities to exploit:
 - Shape load
 - Shift load
 - Shed load
 - Shimmy
- Pricing (rate design) is an effective approach to shape, shift, or shed load.
 - Versant seasonal heating rates
 - 13% customer adoption
 - Versant offers time-variant EV charging rates
 - Versant residential customers can use both heating and EV rates with different meters
 - No additional monthly minimum charge

Potential Study, LBNL, November 2016

In Maine, we should make sure that very ratepayer dollar is spent efficiently and effectively to make the best investments for customers to:

- · Improve reliability and service
- · Build grid scale solar and wind
- · Support distributed resources
- · Improve efficiency and electrify; and
- · Support Maine's future and economic growth.

Contact Information

David P. Litte ll, Esq. +1207-228-7156 Dlitte ll@Bernste in Shur.com

COMPETITIVE ENERGY SERVICES, LLC

ClimateWork Maine Richard Silkman, Ph.D.

May 19, 2023

COMPETITIVE-ENERGY.COM

866.408.4591

Rethinking Electric Grid Design to Meet Beneficial Electrification and Enhanced Distributed Generation

A Portland Area Case Study

GridSolar, LLC May 2020 What is required for Maine to achieve a zero-carbon economy through full beneficial electrification and maximum build-out of distributed solar generation

https://www.competitive-energy.com/rethinking-electrical-grid-design

Portland Region – Electric Grid

Modeling Energy Use:

- Building-by-Building every single parcel in the region.
- Data obtained from tax records in every community and from GIS mapping
- Circuit Data from CMP

Table 3-1 Summary of Buildings in the Portland Area

Residential Buildings	Commercial Buildings	Industrial Buildings	Total
73,000	6,167	1,003	80,170
209,782,673	67,793,059	18,802,851	296,378,583
2,874	10,993	18,747	10,871
	Residential Buildings 73,000 209,782,673 2,874	Residential Buildings Commercial Buildings 73,000 6,167 209,782,673 67,793,059 2,874 10,993	Residential Buildings Commercial Buildings Industrial Buildings 73,000 6,167 1,003 209,782,673 67,793,059 18,802,851 2,874 10,993 18,747

Current Energy Use – by Fuel and by Sector

4

Table 4-1 Summary – Electricity Use by End-Use Sector Under Beneficial Electrification

Load Type	Total Loads (MWh)	Maximum Demand (MW)	Capacity Factor %
Current Electricity Use	1,680,233	271	71%
Total Heating	1,140,843	738	18%
Residential AC	110,542	132	10%
Total Process	583,248	123	54%
Total EV Charging	613,343	145	48%
Total Loads	4,128,208	1,086	43%

Note: Demand levels shown are for each Load Type, respectively. Demand levels for Total Loads are the coincident demands across all load types.

Overall load factor decreases markedly due to conversion of heating systems to electricity

Electricity use - 246% higher Peak Demand - 400% higher

Maximum Build-out of Rooftop Solar in Region

Install Rooftop Solar on Every Building/Structure in the Portland Region – with full build-out achieved in 2050:

Capacity: 1,011 MW Energy: 1,590,280 MWh Coverage: 27% of all rooftop surface

39% of Total Electricity Use in the Region by 2050

Table 5-1 Installed Solar PV	Generation	n – Portland Area			
		2020	2030	2040	2050
Residential					
Pct. Of Bldgs with Solar PV	%	0%	1%	33%	100%
Total Bldg. Footprint	Sq.Ft.	127,783,933	127,783,933	127,783,933	127,783,933
Number of Solar Panels	No.	0	19,415	582,463	1,765,038
Maximum Hourly Generation	MW	0.00	6.12	183.61	556.41
Pct. Of Rooftop Covered	%	0.00%	0.28%	8.47%	25.68%
Annual Solar Generation	MWh	0	10,691	320,736	971,929
Commercial					
Pct. Of Bldgs with Solar PV	%	0%	1%	33%	100%
Total Bldg. Footprint	Sq.Ft.	50,412,359	50,412,359	50,412,359	50,412,359
Number of Solar Panels	No.	0	8,547	256,403	776,978
Maximum Hourly Generation	MW	0.00	2.75	82.62	250.35
Pct. Of Rooftop Covered	%	0.00%	0.32%	9.46%	28.65%
Annual Solar Generation	MWh	0	5,027	150,812	457,005
Industrial					
Pct. Of Bldgs with Solar PV	%	0%	1%	33%	100%
Total Bldg. Footprint	Sq.Ft.	17,342,593	17,342,593	17,342,593	17,342,593
Number of Solar Panels	No.	0	2,932	87,961	266,548
Maximum Hourly Generation	MW	0.00	0.96	28.79	87.24
Pct. Of Rooftop Covered	%	0.00%	0.31%	9.43%	28.57%
Annual Solar Generation	MWh	0	1,775	53,244	161,347
TOTAL - All Buildings					
Total Bldg. Footprint	Sq.Ft.	195,538,885	195,538,885	195,538,885	195,538,885
Number of Solar Panels	No.	0	30,894	926,826	2,808,565
Maximum Hourly Generation	MW	0.00	9.83	295.02	894.00
Pct. Of Rooftop Covered	%	0.00%	0.29%	8.81%	26.70%
Annual Solar Generation	MWh	0	17,493	524,792	1,590,280

Energy Balances/Imbalances by Building

Table 6-1 Annual Building Energy Balances – 2050

	Estimated Building Energy Balances - 2050					
Building Type	[Rooftop Solar PV Generation as a Percent of Building Energy Use]					
	<20%	20-40%	40-60%	60-80%	80-100%	>100%
Residential						
No. of Bldgs.	20,266	13,719	11,937	9,001	7,671	10,408
Percent	28%	19%	16%	12%	11%	14%
Cum. Percent	28%	47%	63%	75%	86%	100%
Commercial						
No. of Bldgs.	1,542	1,314	2,028	957	249	77
Percent	25%	21%	33%	16%	4%	1%
Cum. Percent	25%	46%	79%	95%	99%	100%
Industrial						
No. of Bldgs.	400	593	13	1	0	1
Percent	40%	59%	1%	0%	0%	0%
Cum. Percent	40%	99%	100%	100%	100%	100%

Distribution Grid – Reliability Issues

Virtually every circuit in the region is undersized to carry peak loads and will experience significant reverse power flows ...

Distribution Grid – Reliability Issues

Figure 6-4 Max. Loads by 34/12.5 kV Transformer - 2020 - 2050 as a Pct. of High Ratings

The same problem exists for transformer capacity at the region's substations – by 2040, most will be well-undersized to meet future peak loads.

We will need to see a complete redesign and rebuilding of the region's Distribution Grid.

Electricity Flow – Current Imbalances

With essentially no Distributed Generation today, all of the region's electricity is imported. Hour-by-hour variation, however, is relatively small due to high annual load factor of current end uses of electricity.

Electricity Flow – Current Imbalances

By 2050, the region's grid must be capable of importing 1,000 MW of power – and this is true regardless of how much distributed solar is installed.

Storage could help – but it must be seasonal storage. Diurnal storage provides very little relief.

Transmission Grid Upgrade Costs

Table 8-6 Summary – Estimated Cost of Transmission/Subtransmission Upgrades - 2050

Estimated Transmission/Subtransmission		Cost		
345 kV System	No.	Miles	(millions\$)	
New 345 kV Substations	3		\$318.12	
345 kV Line - Overhead		66	\$424.96	
345 kV line - Undersea		18	\$231.80	
Subtotal			\$974.88	
115 kV System				
New 115 kV Substations	4		\$218.32	
345 kV Line - Overhead		84	\$293.49	
345 kV line - Undersea		1	\$8.42	
Subtotal			\$520.23	
34.5 kV System				
New 115 kV/34.5 kV Substations	25		\$556.97	
34.5 kV Line - Overhead		225	\$492.05	
34.5 kV line - Undersea		0	\$0.00	
Subtotal		_	\$1,049.03	
Total Transmission/Subtransmission		_	\$2,544.13	

The total costs for the transmission upgrades required to serve 2050 electrical loads in the Portland Region will be roughly \$2.5 billion in 2020\$.

The Distribution cost upgrades are on top of this amount.

Grid Upgrade – Land Requirements

Table 8-7 Land-Use Consequences of Electric Grid Build-Out

		Width	Length	Area
Transmission Lines		(ft.)	(miles)	(acres)
345 kV Lines		150	66	1,200
115 kV Lines		100	84	1,018
34.5 kV Lines		50	225	1,364
Subtotal				3,582
		Width	Length	Area
	No.	(ft.)	(ft.)	(acres)
Substations				
345 kV Lines	3	1,200	1,700	140
115 kV Lines	4	450	450	19
115 kV/34.5 kV	25	200	200	23
Subtotal				182
Total Land Area				3,764

Most of the land requirements for the upgrades are for linear corridors.

To put this acreage in perspective, the I-295/I-95 corridor from Freeport to Scarborough takes up a little less than 1,000 acres.

THANK YOU

COMPETITIVE-ENERGY.COM

866.408.4591

DYNAMIC GRID The \$10 Trillion Problem

Estimates from:

*Gupta etal, Spatial analysis of distribution grid capacity and costs to enable massive deployment of PV, electric mobility and electric heating, University of Geneva, and

1898 Company (Burnes and McDonnel), Doug Houseman, Internal research

DYNAMIC S GRID The Challenge

Why Now? Rapid growth in DER and Electrification.

Regulatory solutions are happening too slowly

Who Cares? DER and Electrification creates new system dynamics

Why it matters? need to speed the new solutions, or decarbonization will fail

DYNAMIC @ GRID Slaying the Distribution Dragon

DYNAMIC S GRID Systems Architecture

Apply 'present forward' + 'future back' systems thinking and analysis to evaluate grid expansion proposals so that the grid can function holistically.

DYNAMIC S GRID Grid Architecture

Grid Architecture is critical for making key structural choices to enable a more intelligent, selfoptimising power system for the 21st century

Affordability, quality and resilience outcomes for all

Societal /

Environmental

Benefits

New offerings for customers

Enhanced decarbonization

Enhanced equity

DYNAMIC SGRID

Operational Coordination

Operational Coordination requires interaction between both markets and control structures

Economists "Get the market rules and prices right and everything will work fine"

✓ Solution:

An ensemble of both market and control features is required

Control Engineers "Get the algorithms and standards right and everything will work fine"

Markets				Controls				
Long-t & II	erm Planni nvestment	ing R S	Residual & Real-time System Optimization		e n	System Operations		
years	monthly	day ahead	hourly	15 min	5 min	1 min	1 sec	Sub-cycle

Image / Concept: Newport Consulting and Pacific Northwest National Laboratory (Adapted)